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1. Introduction

In the numerical simulation of inertial constraint fusion (ICF), it is very important to solve the two-dimensional radiation
fluid dynamics equations. In the numerical solution of the equations, over 80% computational cost has been used to solve the
2-D 3-T energy equations [16,25]. Therefore it is urgent to find a high efficient method to solve the 2-D 3-T energy equations
which will dominate the whole numerical simulation.

The 2-D 3-T energy equations are used to approximately describe the way of energy diffusion of electron, ion and photon.
As time advances, the energy not only broadcasts, but also exchanges between photon and electron, and between electron
and ion. The coupled temperature of electron, ion and photon are unknown and therefore are needed to be calculated. In
most cases, the 2-D 3-T energy equations can be simplified into the 2-D 3-T heat conduction equations, and they are essen-
tially same [25]. In fact, the 2-D 3-T heat conduction system is a type of radiation diffusion model. For other related radiation
diffusion models, see [3,7,8,19,21,22,24,26,27].

For solving the discretized 2-D 3-T heat conduction equations, some nonlinear iterative method must be employed. At
present, Newton-Krylov method, in which the Krylov subspace method is employed to solve the Newton linear equations,
is widely used in many areas to solve all kinds of large scale nonlinear problems [4-6,20]. One of the most important advan-
tages of the Newton-Krylov method is that it can be implemented without explicitly forming and saving the Jacobian matrix.
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This will greatly improve the computational efficiency and save the memory space. In this paper, the Newton-Krylov method
will be used to solve the discretized 2-D 3-T heat conduction equations.

For any iterative method, a suitable initial iterate must be provided. The initial iterate has strong influence on the method,
including its convergence, computational efficiency and robustness. To solve the linear equations discretized from time
dependent partial differential equations, Fischer proposed a kind of projection technique to produce an effective initial iter-
ate in [15]. More recently, for solving linear and nonlinear equations arising in fluid flow simulation, Tromeur-Dervout and
Vassilevski proposed some techniques for choosing better initial guesses [30]. Basing on the history of the evolution problem
solving, they proposed a better initial guess for two iterative linear solvers; and by using a reduced model technique, they
proposed a better initial guess for iterative nonlinear solvers. For solving the 2-D 3-T heat conduction equations, the tem-
perature at the current time, which is referred to as the usual initial value, is often used as the initial guess for computing
the temperature at the next time. This is a reasonable choice when the time step size is not very large. If the time step size
is relatively large, however, the usual initial value is not a good choice. In particular, for the location where the energy varies
acutely, the temperature at the current time is usually not a good choice of initial iterate for computing the temperature at
the next time. A prediction/correction method is commonly used for solving ordinary differential equations and computa-
tional fluid dynamics, see [17, Chapter 10] and [23]. This method can specially be used to produce an initial iterate for
any iterative method. For the 2-D 3-T heat conduction equations, however, the prediction/correction method is not effective
when it is used to produce an initial iterate. Actually, the nonlinear iteration does not converge when a prediction/correction
initial iterate is used in our numerical experiments.

In this paper, for solving the discretized 2-D 3-T heat conduction equations, a new method of choosing a nonlinear initial
iterate is proposed. In this method, first a predicted temperature is obtained through predicting the energy at the next time;
second the predicted temperature is further modified on the subregion where the energy varies most acutely. The modifi-
cation is finished by solving a nonlinear system defined on the subregion. Numerical results show that the proposed initial
iterate is very effective. By using the proposed initial iterate, not only is the computational efficiency increased by about
twice, but also the convergence behavior is improved in some cases.

The rest of the paper is organized as follows. In Section 2, the 2-D 3-T heat conduction equations and discretization
scheme are given, and in Section 3, the Newton-Krylov method and the KinsoL package are introduced. In Section 4, the strat-
egy for choosing the new initial iterate is provided, and in Section 5, some numerical results are presented. Finally, a brief
conclusion and some remarks about the method are given in Section 6.

2. 2-D 3-T heat conduction equations and their discretization

In this section, the 2-D 3-T heat conduction equations are firstly introduced, and then the equations are discretized by a
finite volume method on a rectangular domain.

2.1. 2-D 3-T heat conduction equations

The 2-D 3-T heat conduction equations are defined as
CpeZe 17 (K, VT,) = 0ei(Ti — Te) + Wer(T; — Te),

ve pt p

Coi Gt =1V - (KiVTy) = 0ui(Te — To), 1)

CorZe — 1V - (K,VT,) = Wer(Te — Ty)

ot p

with (x,y) € Q, and 0 < t < Trax. Eq. (1) are respectively the electron, ion and photon temperature equations. The compu-
tational domain consists of several subdomains, each contains one specific kind of material. In Eq. (1), the relevant physical
parameters are as below:

T, (o =e,i,r) are electron, ion and photon temperatures.

C,y (o0 =e,i,r) are isochore specific heat coefficients.

p is the density of the material.

K, =Ky(p,Ty) (2 =e,i,r) are heat conduction coefficients.

we; and w,, are respectively the energy exchanging coefficients between electron and ion, and that between electron and
photon.

Specifically, C,,, K, and w,, are defined respectively as follows:

C, O=e AT a=e 4 o2 )
) ) i . oo=i
Cmc = Ci, =1, Koc = AjT,—S/Z, oU=1, Wey= “if 971/2 )
ol?, a=r 345 AepT, ", o=T
rtrs - ArTr , o=r

where c, are constants, A,, Ae,, f and p are continuous in the interior of the material.
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The boundary and initial conditions are:

e boundary conditions:
(a) onrigid walls: K,VT,-n =0, o = e,i,r, where n is the outer normal vector of the boundary;
(b) on free surfaces: K,VT,-n=0, o= e,i; Tr = Tr(t,X,¥)|xy)co0,,-

e concatenation conditions: across the material interfaces, T,, K, VT, - n are continuous, « = e, i, 1, n is the outer normal vec-
tor of the interface;

e initial conditions:

T,(0,x,y) = To(X.y), o =e,ir.

The system energy of unit mass is defined by

%C,T‘r‘.

The 2-D 3-T heat conduction equations are highly nonlinear because the heat conduction coefficients K, and energy
exchanging coefficients w,, are strongly nonlinear functions of the temperature. Besides, the computational region is com-
posed of multiple materials and some physical parameters are strongly discontinuous across the interfaces of the materials,
which further makes the equations hard to be solved. All these properties will be transferred to the discretized nonlinear
algebraic equations.

E=E.+E; +E., whereE,=c.T., Ei=cT; E =

2.2. Discretization scheme for 2-D 3-T heat conduction equations

In this section and the following ones, the rectangular computing domain Q,, = [0,A] x [0, B] is considered, where the up
boundary is the free surface, and the rest are the rigid walls. The 2-D 3-T heat conduction equations (1) are discretized by a
fully implicit finite volume method. Specifically, the domain ©,, is zoned into L x M meshes by some lines paralleling the
axes, where the step size in x direction is h; = A/L and in y direction is h, = B/M. The temperature, energy and density
are defined at the center points of the meshes.

Now, take the photon heat conduction equation as an example, the concrete discretization of Eq. (1) are presented here.
As shown in Fig. 1, let the current element be Q;,, (I=1,2,...,L; m=1,2,...,M), the common edges of Q;,, with its neigh-
bors be y; (j=1,...,4), and p; be the center point of ;. Next use (I,m) to represent the center of Q,,,. Assume that ¢, is the
current time, t,,; is the next time, and At, = t,,1 — t,. Integrating both sides of the photon heat conduction equation over
Qm X [tn, try1], then

thi1 8'1"’_ thi1 (298]
/ Cr 7 dedt - / / (K, VT,) dQdt — / (T, — T,)dQdt. 2)
tn le Q th Ql.m

The first term in (2) can be discretized as:

tnit oT, tna1 oT, tna1 3 0T, (T:H)‘l _ (Tf)‘l
/t" 5 CyrEdeth,_m\/[n (C,,rﬁ)mdt_\{)l:m\[n ( T3 m) dt = ¢yl TS ~

where |Q; | represents the area of the element Q,,,, the physical quantities with superscript n and n + 1 represent the cor-
responding value at the current time and the next time, and the physical quantities with subscript I, m denote their value at
the point (I, m). By using the fully implicit scheme and the Green formula, the second term in (2) can be discretized as

m+1
m L P3
oo _ | 1_74_ _ _i_Ql,'_n_ _ _p_2_ .
m—1 ipl
h :
h1 -1 l [+1

Fig. 1. Schematic diagram of the mesh.
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(298] n+1
/ / (K, VT,)dQdt ~ At, / (1v : (1<rvr,)) o ~ Al / (K VT,)™ 1 - ndl
tn U P Qm \P Pim Jooyy,

Afn el gl
E vil(K: VT,
plm j=1 |/] )

here n is the outer normal vector of the mesh Q;, [y;| the length of y;, and (K}*' VT - n); the value of the heat density at p;,
which can be determined by combining the center point value of K; and T, on mesh (I, m) and its neighbor meshes [16]. The
last term in (2) can be discretized as

thi
/ / (er(Te — T,)] dQdt ~ Aty Q| (@er(Te — Ty,
Qm

The electron and ion heat conduction equations can be discretized in the same way. Thus, the discretized equations at (I, m)
are

Lm >

4
Cepl,m‘Ql.m‘(TZTrln Toim) — Aty Z Wj‘(KZHVTZH “n); = PLmAbn| Q| (@ei(Ti — Te) + Wer(Tr — To))im!
=

4
CiPim| Pl (Tifm = Tiim) = At Y DK VT - n); = oy At | Q| (0ei (Te = Ti)) !

Im >
j=1

Crplm‘leK( rlm)4*( rlm Atnz‘"/; (KT n)j = PimAbn|Qum|(©er(Te Tr))nﬂ-
j=1
Now let
Tim = (T Tiim: Trim)
and

=(Ti1, T2, Ten.T12. T2 Ty oo Ton Tos - Tew)
then the discretized equations at (I, m) are
Fim(T) = (Feym(T), Fiym(7), Fruim(7)) = 0,
where

4
Feim(T) = Cepl,m|91,m|(Teﬁn Toim) — Al Z |"/j|(KTeHl VTt n)j = PimAtn|Qim|(Wei(Ti — Te) + Oer(Tr — Te))?;l]’
j—l

Fitm(T) = Ci1| Quml (Tifm = Tiim) — At Z KT VT ) = Py ta| Qunl (0ei(Te = To))

Lm »

1
Fr.z.m(T)=ZCrpz,m|QLm\((T?73,.) —(Tim)) Afnzm |(KF VT ) = Py Atal Q| (@er (Te = Tr))i,

Let
F(T)=(F11(T),...,Fr1 (T),F1_2(T),...,FLZ(T),...,FLM(T),...,FLM(T))T,

then the equations needed to be solved is
F(T)=0, 3)

its scale is N = 3LM.
Usually, Eq. (3) has the following characteristics:

(i) The expression of the equations is very complicated. Therefore, if Newton method is used to solve the nonlinear equa-
tions, it will be very difficult to form the exact Jacobian matrix; instead, only some approximate Jacobian matrix may
be produced. Or, it is unnecessary to form it (for example, if a Jacobian free Newton-Krylov method is used).

(ii) The heat conduction coefficients and energy exchanging coefficients have strongly nonlinear dependence on the tem-
perature, and some physical parameters are discontinuous across the interfaces of the materials. Consequently, the
discretized nonlinear equations is very ill-conditioned.

Due to the above characteristics, it is a difficult task to solve the equations effectively. In this paper, KinsoL package, which
is based on the Newton-Krylov method, will be used to solve this problem.
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3. Newton-Krylov method and Kinsor package

Newton-Krylov method [5,6] will be used to solve Eq. (3). This method is one of the most important and effective tools for
solving large sparse systems of nonlinear equations, and Kinsor package is a kind of nonlinear solver based on the Newton-
Krylov method [10].

3.1. Newton-Krylov method

Newton-Krylov method is a kind of inexact Newton method [11]. Since the classical inexact Newton method is locally
convergent, some global strategies, such as the line search or trust region techniques, are required in practical applications
[2,4-6,13]. Particularly, if the line search method is augmented with Newton-Krylov method, then Newton-Krylov with line
search method is obtained [1,13,14,28], which can be described by the following algorithm. Note that in the algorithm the
function f(7) is defined by

ST) =S IF@)E @)

Algorithm. Newton-Krylov with line search

1. Given 7, tolerance ¢, and two parameters 0 < o < f < 1, let k := 0.
2. While | F(T®)|| > &
2.1. Choose 7 € [0, 1), solve the equations

F(T¥)s = —F(TY) (5)

by some Krylov method, and obtain an inexact Newton direction s, such that

IF(T®) + F (7)) < il F(TY)) - (6)
2.2.  Perform line search along s®, obtain a step J; = 6;s%, where 0, < (0, 1], such that

FTY + 60 <F(TY) + aVF(TY) 3 )

and

FTY 460 = F(TY) + VAT 8)

23, Ty : =T+ -
24, k:=k+1.

The linear equations (5) is the Newton equations, 7, is the forcing term, which is used to control the accuracy for solving the
Newton equations, and s® is the inexact Newton direction of F at 7. In step 2.2 of the algorithm, a step , = 6,s® satisfying
both (7) and (8) is obtained, and then in step 2.3 the next iterate is formed. The inequalities (7) and (8) are respectively o and
B conditions [12]. As for the determination of the parameter 0, and some other details of the algorithm, see [4-6,12-14,28].

In step 1 of the algorithm, a proper initial iterate 7© must be provided. The choice of the initial iterate has strong influ-
ence on the computational efficiency of the method. In most cases, a good initial guess cannot be obtained easily. To solve Eq.
(3), the temperature at the current time, which is referred as the usual initial value, is often used as the initial iterate for com-
puting the temperature at the next time.

In the implementation of the Newton-Krylov method, only the product of the Jacobian matrix with vectors is concerned,
which can be approximately replaced by the computation of function evaluations. In fact, if 7 is continuously differentiable,
then for any 7, v € R¥, F'(T)v can be computed approximately by

T+ov)—-F(T
Py FT 00 - F(T)
o
where ¢ is a finite difference step size. Therefore, this kind of method can be implemented without explicitly forming and
saving the Jacobian matrix. As a result, the computational cost and memory space can be greatly saved. Thus, Newton-Krylov
method is suitable for solving large scale problems in application areas [4-6,20].

3.2. A nonlinear solver — KinsoL

The numerical experiments in this paper are carried out on a platform - KinsoL package. This package, developed in Law-
rence Livermore National Laboratory, is a general-purpose nonlinear solver based on Newton-Krylov subspace technology
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(Krylov Inexact Newton SOLver) [10]. KinsoL is a part of the package Sunbiats, a SUite of Nonlinear and DlIfferential/ALgebraic
equation Solvers. For details about SunbiaLs, see [18].

4. The strategy for choosing the initial iterate

In this section, a choice of the nonlinear initial iterate for solving Eq. (3) will be presented. Assume that, at time step n
(current time), the electron temperature T;, the ion temperature T} and the photon temperature T; are known. Next an initial
temperature T2 7M1 and T"'° for time step n + 1 (next time) will be predicted.

The procedure for predicting the temperature includes two phases: first, the energy of electron, ion and photon for the
next time is predicted, and on this base an initial temperature is obtained; second, the obtained initial temperature is further
modified by solving a subregion nonlinear system. Now, the concrete prediction procedure is described as below.

4.1. Prediction of the initial energy value

Because the up surface is free, only the prediction of energy on meshes corresponding to one line x = x, = (I — 1)h;, which
parallels to axis y, will be discussed. Furthermore, for the sake of convenience, we will focus on the prediction of the photon
energy.

Note that, from time step n — 1 to n, the variation ratio of photon energy on mesh (I,m) is

EY,

ﬁ"m:i”n&tn_]”m’ m=1,2,....M, 9)
where E},,, and E}';, respectively denote the photon energy on the mesh (I, m) at time step n and n — 1, and At,,_; represents

the time step size from time step n — 1 to n. By (9), define

Dn+1
,M, m:1,27--~7M7 (10)

gr.l,m - pn
rlm

which represents the proportion of the variation ratio of the photon energy at three sequent time steps (time stepn —1,n
and n + 1). For the sake of convenience, &7, ,, is called the proportion factor of the variation ratio of photon energy at time
step n on the mesh (I, m). It is easy to see that the prediction of the photon energy for time step n + 1 is equivalent to the
prediction of &, . Therefore, it is only necessary to concentrate on the prediction of &, in the following.

Since the photon energy variation ratio D’:‘,f,; and D, . near the wave front vary more greatly than at other locations, the
same situation occurs to &,,,. To predict the proportion factor &}, along the line x;, it is necessary to determine the location
of wave front; that is, to determine the location where the photon energy varies acutely from the previous time to the cur-
rent time. For this end, let

ki) = arg max Dr,m,
then (I, k;,) is the mesh on which the photon energy varies the most acutely from time step n — 1 to n along the line x = x,.
Divide the meshes {(I,m) : 1 < m < M} corresponding to the line x = x; into two parts, that is,

(i) {(,m): 1 m <k}, the meshes locates at the area where the front of the photon energy has just or has not reached.
(ii) {(I,m): k7, < m < M}, the meshes locates at the area where the front of the photon energy has already or just swept.

Next, the value of &, on the above two parts will be determined respectively, see Fig. 2 for an illustration:

rlm

(i) For 1 < m < ki, the variation of photon energy on different meshes will be greatly different: if the photon energy does
not reach some mesh at the next time, then the photon energy on this mesh will not change; otherwise, if the front of
the photon energy reaches the mesh at the next time, then the photon energy on this mesh will vary acutely from cur-
rent time to next time. For both cases, let ¢, = 1. Consequently, the photon energy at the next time is predicted by

E?T}LO - ?.Lm +%:n]( :l,l.m Erlm) - 1 2 ]
In this way, it is assumed that the proportion factors of the variation ratio of photon energy on each mesh are same at
two sequent time steps.

(ii) For k7, +1 < m < M, the meshes (I,m) are in the location where the photon energy has already or has just past. There-
fore, these meshes can be further divided into two parts: one where the front of photon energy has just swept and
another where the front of the photon energy has already swept:

(a)  Assume that there are ky meshes where the front of the photon energy has just passed, here ky is an integer
related to M (see numerical experiments in Section 5). For these k) meshes, the proportion factors of the var-
iation ratio of the photon energy at the current time and the next time are greatly different. For these ky
meshes, the value of ¢, is given by

(11)

rl
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£n72 gnfl n
r,l,m r,m r,l,m
>e N —
> n _ ¢n—1
" rilm — gr,l,m
> Zl + ]CM + 1 —
E::§§~%ﬁl+kM' -
n _ 1 n—1 n—
0 rilm — 2 (é.r,l,m + grl m)
n
7+ 1 _
n
® kr,l _
[ ]
n —
® rlom T 1
¢l _
Fig. 2. Schematic diagram for choosing &}, .
1
£n :
SrLK 4 = Erlk" 1yt frlk" 4 J=1.2.. k. (12)

In fact, in the above way, it is assumed that the proportion factor of the variation ratio of photon energy on the mesh
(LK, +J) at time step n is approx1mately equal to the mean of the value on the mesh (I, k7, '+ j)at time stepn — 1 and
the value on the mesh (I, k;'; % 1 j) at time step n — 2. By (12), the photon energy on these ky meshes can be predicted
by

At
En+l 0 n + "frlknlﬂ _ En—l
rLK! +J LK+ Aty 1 rlk”1+j LK+ )
i e y i

wherej=1,2,... ky
(b) If k';_, +ky +1<m< M, then the front of photon energy has already swept the meshes. For these meshes,

choose
S Sy M=MM =1, K+ ky+1, (13)
where &, is defined by (10), and

T /Dl m=MM =1, K"+ ku,

én—l _ o . 14
rhm gf’,’;ﬁukm, m=k" kw1, K +k+ 1. (14)

In this way, it is assumed that the proportion factors of the variation ratio of photon energy on a fixed mesh are almost
same at two sequent time steps. Now, based on the above assumption, the photon energy on these meshes can be
predicted by

At" 6?.l,m ( n

“At,; \Erim —Em),

where m=M,M —1,....k}, + ky + 1.

n+1,0 n
Erlm rlm+

Once the above value of photon energy is predicted, a predicted photon temperature can be obtained. For electron and
ion, in a similar way D}, &, and k}, (o = e, i) can be defined, and the temperature at the next time step can be predicted.

4.2. Further modification of the temperature

For the initial temperature of electron, ion and photon obtained in Section 4.1, numerical experiments show that it is rel-
atively accurate (the predicted temperature is very close to the temperature at time step n + 1) on most of the meshes except
the ones where the energy varies acutely. That is, the obtained initial temperature is not so effective near the meshes where
the energy varies acutely (see the numerical results in Section 5). To make the ultimate initial value more effective, it is nec-
essary to further modify the initial temperature on these meshes. For this purpose, assume that, along the line x = x,, it is



H.-B. An et al./Journal of Computational Physics 228 (2009) 3268-3287 3275

necessary to modify k; meshes in front of the mesh on which the energy varies most acutely and k, at the back of it. That is,
the temperature on the meshes (I, :_’1 —kp),..., (l,k;_l + ky) should be modified. To deal with the cases of electron, ion and
photon uniformly, let

ky, = min{max{k}, + k, : o« = e,i,r},M}
and
kg, = max{min{k}, — k; : o« = e,i,r}, 1},

then it is only necessary to modify the initial temperature of electron, ion and photon on ky,—kj, +1 meshes
{(I,m) : ky, < m < kj,,}. Consider all the meshes corresponding to the L lines, it is necessary to modify the initial temperature
on the subregion

Lk

= U Qn

I=1 m=kg,

See Fig. 3 for a simple illustration.
To modify the temperature on Q", we restrict the original equations (3) onto this subregion, and obtain a small scale non-
linear equations

F(T)=0, (15)
where 7 and T represent respectively the restriction of F and 7 onto the subregion Q", that is,

F=F|Q" and T =T|Q".
To define the system (15) properly, the following boundary conditions are supplied:

o For the boundary in the interior of Q, the temperature obtained in Section 4.1 is used to supply a boundary condition. This
is a reasonable choice since the temperature obtained in Q\ Q" is relatively accurate.
e For the physical boundary conditions, the original conditions for Eq. (1) are used.

In fact, with above boundary conditions, the subregion system (15) is a part of the full system (3), where the temperature
in Q" is unknown, and that outside Q" is known.

For solving Eq. (15), the KinsoL package is also used. Besides, the temperature obtained previously on Q" is used as the
initial iterate for solving this subregion nonlinear equations. After the solution of Eq. (15), a relatively accurate temperature
on the subregion is obtained. The temperature on Q" and the previously predicted temperature on Q \ " comprise the initial
iterate to the nonlinear iteration of the full, coupled nonlinear equations.

It is necessary to point out that the idea of modifying the subregion temperature is similar to the additive Schwarz pre-
conditioned inexact Newton (ASPIN) method in [9], but there is some difference between them. In the ASPIN method, many
subregion nonlinear systems are needed to be solved, and then the correction to the approximate solution on each subregion
is summed up to form a new nonlinear system on the whole region. Here, only one subregion nonlinear system is needed to
be solved and the approximate solution on the subregion will be used to form an initial iterate for solving the full nonlinear
system. For details about the ASPIN method and its convergence results, see [1,9].

k’n

uel

n
del

Fig. 3. Schematic diagram for subregion Q".
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5. Numerical results

In this section, some numerical results about the improved initial value will be presented.

In all the experiments, the maximal simulation physical time is 10. The initial temperature of electron, ion and photon in
the domain is 3.0 x 10~*. The parameters for computing domain are A = 10, B = 10, the upper half of the domain is plastic
foam (CH), and the lower half part is glass (SiO,). For convenience of reference, here is a list of the relevant physical param-
eters cited from [25]. For each material, the parameters c, are defined by

Cce=15I,, ¢ =151 ¢ =0.2517,

where I', together with some other parameters are listed in Table 1.
5.1. Set up for solver

KinsoL package is employed to solve both the full nonlinear system and subregion nonlinear system, and GMRES method
[29] is used to solve the Newton equation. KinsoL iterations are terminated when an absolute tolerance |7 (7 (k))Hoc < Eresidual
or a step tolerance [|6||., < &y is satisfied. For the GMRES iteration, the controlling parameters include the forcing term #j,
the maximal iteration number max_gmr_it and the maximal restart number max_gmr _restart. The concrete values of these
parameters for solving both the full and subregion systems are listed in Table 2.

At each time step, for both the full and subregion nonlinear equations, the block diagonal part P" of the Jacobian matrix at
initial guess is formed, and P" is used as the preconditioning matrix for all linear systems at this time step. Therefore, for dif-
ferent initial values, the corresponding preconditioning matrices have the same structure, but the corresponding entries of
the matrices may be different. Note that each diagonal block of P" is 3 x 3 sub-block with the following structure:

* ok ok
* % 0
* 0 *

5.2. Control of time steps

Usually, the variation of energy is used to control the time step size in the numerical simulation of radiation diffusion
problems [19,22,26,27]. In our numerical experiments, based on the variation of energy, the following self-adaptive rule
is used to control the time step size At,:

0. Let Aty,_q be known, give fand ), such that 0 < <y <1
1. If the nonlinear iteration at time step n succeeds, then
1.1. if AEL L . < B, then At, = 1.2At, 4;

1.2. if B < AE" L. . <7, then At, = At,_1;

relative

1.3. if AEllive > 7> then Aty = 0.8AL, ;.

2. Aty = max{At,, Atiow}, Aty < Min{At,, Atyp}.

3. If the nonlinear iterationat time stepn fails, then At, = 1Atn, and solve the equations at time stepn
again.

4., If the time step size has reached the minimal threshold Atjow or if the time step size has been short-
ened continuously five times, but the nonlinear iteration still fails, then exit the whole

simulation.
In the above rule, the following symbols and parameters are used:

o AEM L. .= (E"—E"")/E"is the relative variation of the system energy from time step n — 1 to n, where E represents the
system energy at time j.

e B and y are respectively the low and up threshold for the relative variation of the energy. In numerical experiments,
y = 20% is fixed, and B is set four different values: g = 1%, 2%, 5% or 10%.

e Aty and Aty are respectively the maximal and minimal threshold for the time step size. In numerical experiments,

Aty = 1.0 x 1072 and Aty = 1.0 x 10°°,

Table 1

Physical parameters.

Parameter p Ie T; Iy Ae A Ar B Aei Aer
CH 1.1 45 70 0.007568 81 0.02 2.1e2/p? 3.0 7000 79

SiO, 2.5 40 40 0.007568 60 0.00017 9.0e2/p'> 24 4000 140
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Table 2

KinsoL parameters for solving the full and subregion systems.

Parameters Eresidual Estep Mk max_gmr_it max_gmr_restart
Full 1077 1073 102 200 10

Subregion 104 10°¢ 1074 100 5

5.3. One-dimensional case

First consider a relative simple case: at each time, the photon temperature along the free surface is a constant. This is a
one-dimensional problem in essence. In the experiments of this case, the photon temperature on the free surface is set

1 3
7"1‘1\/& t<4’

Tep(x,t) =
el {2, t>4.

The partition number along axis x is set L = 40, and along axis y is set three different cases: M = 160, 320 and 640. Moreover,
for the improved initial value, kyy = M/40 + 1, kf = M/40+ 1 and k, = M/20 + 1 are set in the numerical experiments.

To illustrate the effectiveness of the different initial values, the predicted photon temperature on five meshes along a line
x = x are listed in Table 3, where M = 160 and 8 = 1%, and the forward/backward Euler method is employed to produce a
predicted/corrected initial value. In the table, T"!} represents the usual initial value, that is, T"{12 = T T"*! is computed

r.usua r.usua
with the usual initial value; Tf_i*nlﬁ represents the predicted temperature obtained by the method in this paper; and T}}%
represents the predicted temperature obtained by the prediction/correction method. Besides, to show clearly the difference
between an initial value and T''", the relative error for different initial values on each mesh is listed in Table 4. For example,

for the improved initial value, the relative error on each mesh is defined as

n+1,0 n+1
nl | rimpr Tr ‘
rimpr — n+1
Tr

From Table 3, it can be seen that on the meshes 156 and 157, all the predicted photon temperature is 3.0e—4, which equals
exactly the temperature at the next time. Apart from these two meshes, it can be seen from Tables 3 and 4 that the predicted/
corrected initial value is the worst among all initial values. In particular, on mesh 159, the predicted/corrected initial value is
9.398861e—3, which is about 31.3237 times as high as the corresponding value of T'"'. On this mesh, the relative error of the
corrected initial value reaches 30.31374. The improved initial value is the best on all meshes. That is, on all meshes, the im-
proved initial value is the one closest to T""!. The usual initial value is better than the predicted/corrected initial value, but
worse than the improved initial value.

It should be pointed out that the nonlinear iteration is divergent when the above predicted/corrected initial iterate is
used. Since the 2-D 3-T heat conduction equations have strong nonlinearities, therefore the initial iterate obtained by the
prediction/correction method differs greatly from the temperature at the next time step in the vicinity of the front of energy.
Thus the prediction/correction method is not suitable for choosing initial iterate for this problem. In the following discussion,
the predicted/corrected initial value will no longer be concerned. Attention will be paid on comparing the effectiveness of the
improved initial value with the usual initial value.

Fig. 4 is the curves of the photon temperature at current time, the corresponding next time and the initial temperature
given by the improved initial value on a line x = x,. In the figure, T" and T"*! denote respectively the photon temperature at

Table 3

Comparison of photon temperature for different initial values (M = 160, =1%, n=9).

m 156 157 158 159 160

T;”l 3.0e—4 3.0e—4 3.0e—4 3.001513e—4 1.120870e—1
I 3.0e—4 3.0e—4 3.0e—4 3.001128e—4 1.101993e—1
[ 3.0e—4 3.0e—4 3.0e—4 3.001598e—4 1.129541e—1
[ 3.0e—4 3.0e—4 1.392022e—3 9.398861e—3 5.635451e—1
Table 4

Relative error of photon temperature for different initial values (M = 160, = 1%, n=9).

m 156 157 158 159 160

gnel 0.0 0.0 0.0 1.282686e—4 1.684138e—2
entl 0.0 0.0 0.0 2.831905e-5 7.735955e—-3

r.impr

et 0.0 0.0 3.640073 3.031374e+1 4.027747e+0
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Fig. 4. Photon temperature at time step n and n + 1, and the improved initial value of photon temperature for time stepn+1 (M = 160, g = 1%). (left) No
modified; (right) modified.

current time and next time, and T**'° the initial photon temperature determined by the improved initial value. The initial
photon temperature in the left figure is obtained in the first phase of the prediction method, that in the right figure is ob-
tained after the subregion nonlinear equations is solved. From the left figure it can be seen that the initial temperature ob-
tained in the first phase is very near to the temperature at the next time on all the meshes except the part where energy
(temperature) varies acutely. The right figure shows that the ultimate initial value is very close to the temperature of the
next time on all meshes. Particularly, on the meshes where the energy varies acutely, the ultimate initial value is much im-
proved by solving the subregion nonlinear equations.

It should be pointed out that the cost for computing the improved initial value is not expensive. In specific, Table 5 shows
the CPU time (minute) for solving the full nonlinear equations and for computing the improved initial value. In the table,
CPUyuq Tepresents the total CPU time for solving the full nonlinear equations, CPUjn,, represents the CPU time for computing
the improved initial value, and CPUppase_one aNd CPUppase_rwo Tepresent respectively the CPU time spent on the first and second
phases for computing the improved initial value. All the CPU time in the table is the sum spent on all the time steps. From
this table, it can be seen that the total CPU time for computing the improved initial value is less than 0.05 of the total time for
solving the full system. Furthermore, with the increase of the problem scale, the relative cost for computing the improved
initial value is decreasing. For the total cost spent on computing the improved initial value, more than half time is used to
solve the subregion nonlinear equations, and less than half is spent on predicting the energy for each mesh.

Next to discuss about the influence of g, one of the time step size controlling parameters, on the variation of the energy
and time step size. The curves of the relative system energy variation and time step size for different g are shown in Fig. 5
when the usual initial value is used, where M = 160. Take the case of f = 10% as an example, it can be seen from the figure
that the relative variation of the system energy rises continuously at about the first 50 time steps, and the corresponding
time step size is enlarged step by step. At several time steps after that, the variation of the system energy gets near 10% with
the maximal variation not larger than 12%, and the corresponding time step size is enlarged or remains unchanged. Around
time step 60 (t = 0.1155), the time step size reaches the allowed maximal value, and the variation of the system energy re-
duces continuously. When 8 = 5%, 2% and 1%, the curves of the system energy variation and time step size are similar to the
case of p = 10%. About after t = 1.7655, the curves of the system energy variation and time step size for all cases are flat,
with the time step size reaching the allowed maximal value and remaining to the end of the simulation. When M = 320
and 640, the curves of the corresponding variation of the system energy and time step size are similar to those of the case
M = 160.

It is necessary to point out that for the usual initial value in three cases of M = 640 (8 = 1%, 2% and 5%), there exist non-
linear iteration failures and consequent reduction of the time step size, see Table 6. The curves of energy variation and time
step size for these three cases are a little different from those of the improved initial value. Except these three cases, there is
no nonlinear iteration failure in the simulation for all cases of the two initial values, and the curves of energy variation and
time step size are totally same.

Table 5

CPU time for computing the improved initial value (one dimension, g = 1%).

M CPUtotal CPUimpr CPUphase,one CPUphase,two CPT-]impr/‘::Pthal
160 177.4920 8.5851 4.0868 4.4983 0.0484

320 590.9220 19.1995 8.7647 10.4348 0.0325

640 2592.0433 51.1832 23.8207 27.3625 0.0197
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Fig. 5. Curves of the energy variation and time step size (M = 160). (left) Energy variation; (right) time step size.

Table 6
Total time steps for different initial values in one-dimensional case.
M Usual initial value Improved initial value

1% 2% 5% 10% 1% 2% 5% 10%
160 1389 1156 1062 1047 1389 1156 1062 1047
320 1389 1158 1063 1047 1389 1158 1063 1047
640 1393* 1161* 1064* 1047 1391 1158 1063 1047

The reliability of the computational result will be checked by verifying the system energy conservation. Let AE*-1" and

enter
AE;'y’Slé’; represent respectively the energy entered from the free surface and the increased energy of the system from time
step n — 1 to n. Define the energy conservation error from time stepn—1 to n as
|AEn—1.n _ AEn—].n

enter system ‘

AEn—l.n

enter

El'l

Take the cases of M = 160 and 320 as examples, where 8 = 2%, the curves of the energy conservation error at all time steps
for the usual initial value are shown in Fig. 6. From this figure, it can be seen that the energy conservation error is always less
than 4 x 107, and at most time steps less than 1 x 10~* when M = 160. When M = 320, it is always less than 6 x 107%, and
in most period of the simulation time less than 2 x 10~%. This shows that the energy is conservative when the usual initial
value is used and thus the computational result is reliable. In a similar way, the computational result of the improved initial
value can also reflect the energy conservation. Besides, in the following it will be shown that at each time step the computed
temperature is same for the two initial values.

Since the nonlinear problem may have multiple solutions, it is necessary to check if the two sequences starting from dif-
ferent initial values converge to the same solution. Let T, ., and T; ;. (& = e, i,r) denote respectively the computed tem-
perature at time t when the usual and improved initial values are used, and let

I -T

Tt ousua ,{.impr”Z
* ”T;,usua”Z
Take the case of M = 160, 8 = 5% as an example. The curves of 7!, (« = e, r) for all computational time are plotted in Fig. 7.

From Fig. 7, it can be seen that the relative error of photon temperature computed with the two initial values at all com-
puting time is always less than 2 x 1073, and the corresponding relative error of electron always less than 7 x 10~*. At most
of the computing time, the error of photon and electron temperature computed by the two initial values is almost 0. There-
fore, the photon temperature computed with the two initial values is same. So is electron temperature. In a similar way, it
can be shown that the ion temperature computed with the two initial values is same. Therefore, when the usual and the
improved initial values are employed in the computation, the sequences generated from these two initial values will con-
verge to the same solution of the nonlinear system. Thus, as discussed above for the usual initial value, the computational
result of the improved initial value is also reliable.

By the self-adaptive rule of the time step size, if all the nonlinear iterations succeed in the whole simulation when dif-
ferent initial values are employed, then the total time steps for different initial values should be same. To illustrate this point,
the total time steps for different initial values are listed in Table 6. The data with a star means that there is nonlinear iter-
ation failure in the simulation.
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Fig. 6. Curves of the energy conservation error for usual initial value (8 = 2%). (left) M = 160; (right) M = 320.
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Fig. 7. Relative error curves of photon and electron temperature computed with two initial values (M = 160, g = 5%). (left) Photon; (right): electron.

Table 6 shows that if there is no nonlinear iteration failure for the two initial values, then the total time steps for the two
initial values are always same. This is consistent with the previous analysis. For the improved initial value, there is no non-
linear iteration failure for all cases; for the usual initial value, some nonlinear iteration failures occurred in three cases when
M = 640, and consequently the total time steps of the usual initial value is more than those of the improved initial value. All
the failures of the usual initial value are caused by the divergence of the nonlinear iteration. It should be pointed out that for
all the failed cases, all the linear iterations converged. Thus the failures are caused by the initial value. The above analysis
shows that the improved initial value can improve the convergence behavior of the nonlinear iteration. Besides, it is easy
to see from Table 6 that the total time steps needed to complete the simulation are mainly determined by the time step size
controlling parameter B, but have little relationship with the scale of the problem.

Next to discuss the law and character of electron energy diffusion and exchanging with photon and ion near the interface
of the two materials. By Table 1, the electron energy diffusion coefficient in CH (A, = 81) is larger than that in SiO, (A. = 60),
the photon/electron energy exchanging coefficient in CH (A.r = 79) is smaller than that in SiO, (A.r = 140), and the electron/
ion energy exchanging coefficient in CH (A,; = 7000) is larger than that in SiO, (A, = 4000). Thus when the energy crosses
the interface between CH and SiO,, the phenomenon will appear as follows: near the interface, the electron energy in SiO,
diffuses slower than in CH, while by energy exchanging with photon and ion, electron gets more energy in SiO, than in CH.
Therefore, near the interface, the electron temperature in SiO, will be higher than in CH. This phenomenon is observed in the
computational tests, see Fig. 8.

In Fig. 8, the curves of electron temperature at three time steps along the line x = x. = (lC — %)hl are plotted, where [, = [%]
For comparison, the curves of photon temperature are also plotted in the figure. It can be seen that at time step 700, the
electron temperature near the interface in SiO, is higher than in CH. In SiO,, from interior to interface, the electron temper-
ature rises acutely and reaches the highest near the interface; then in CH material, the electron temperature drops acutely
and reaches the lowest near the interface. As time advances, the highest point and the lowest point of the electron temper-
ature curves near the interface are farther and farther away from the interface. Thus the electron temperature varies more
and more mildly near the interface. Besides, by observing the curves of electron temperature at the three time steps, it can be
seen that the highest point is nearer to the interface than the lowest point, this is due to the difference of the electron energy
diffusion coefficients in the two materials. The ion temperature has the similar nature to electron near the interface. It should
be pointed out that Mo et al. also observed this phenomenon [25] where the computing domain is a half disc.
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Fig. 8. Curves of photon and electron temperature at three time steps near the interface (M = 320, g = 1%). (left) Photon; (right) electron.

Next to analyze the variation law of the proportion factors of variation ratio of energy defined by (10). Consider the case of
M =320 and g = 10%. In Fig. 9, the factor curves of photon and electron energy along the line x = x, at time step 200 are
plotted. At the same time, for convenience of comparison, the concrete factors and temperature of electron and photon en-
ergy near the mesh where the factor is the largest are listed in Tables 7 and 8. In the tables, &}, represent the factors cor-
responding to the computed temperature (energy) at time stepn—1, nand n+1, i.e,,

&n :Egtnl _Eg.m . Aty
S

&0 denote the factors corresponding to the computed temperature (energy) at time step n — 1 and n and the predicted tem-

>0o,m
perature (energy) at time step n + 1, i.e.,
1.0
anO _ EZTﬂ _Eg.m . Aty
me g END Aty

om

In the above two expressions, E,,(j = n — 1,n,n + 1) represent the energy on the mesh (I., m) at time step j, E*!° represent
the energy corresponding to the predicted temperature at time step n + 1. Particularly, if E , = E&!, then let ¢", = ¢ =1,

From Fig. 9 and Table 7, it can be seen that, from time step n — 1 to n and then to n + 1, the proportion factor of the var-
iation ratio of the photon energy on mesh 251 is 32.2369, but the factor on mesh 252 is only 0.8013. The factors on these two
meshes differ by 40.23 times. This is because mesh 251 is in the front location of the energy broadcasting, while mesh 252 is
in the location where the front of energy has just passed. The meshes after 252 are in the location where the front of photon
energy has just or already swept, therefore the difference of the factors on these meshes are not so distinct. With the incre-
ment of the mesh indices, the factors get close to 1. As shown by Fig. 9 and Table 7, the predicted photon temperature is very
close to the photon temperature at time step n + 1, and the corresponding ™2 and ¢, are very close. Besides, by observing
the photon temperature on mesh 250, it can be seen that, at time step 200, the photon temperature is 3.0e—4, which is same
as the initial temperature in the region; at time step 201, the photon temperature has increased a bit. For the improved initial
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Table 7

Comparison of the proportion factors of the variation ratio of photon energy (n =200, M = 320, g = 10%).

m 250 251 252 253 254 255

T 1.0 32.2369 0.8013 0.9127 0.9442 0.9599
5;‘;,?1 1.0 32.1989 0.8042 0.9101 0.9417 0.9575
T, 3.0e-4 3.0212e-4 1.3183e-1 4.8784e-1 5.7732e-1 6.4129e-1
T;’j,,l 3.000003e—4 1.3820e-2 4.0120e-1 5.3602e—1 6.1259e-1 6.6916e—1
Tﬁ,‘nl‘o 3.000002e—4 1.3446e—2 4.0123e-1 5.3592e-1 6.1253e-1 6.6912e-1
Table 8

Comparison of the proportion factors of the variation ratio of electron energy (n =200, M = 320, = 10%).

m 250 251 252 253 254 255

&m 1.0 1.5902 0.9260 0.9557 0.9671 0.9734
igﬁ 1.0 1.5897 0.9262 0.9555 0.9670 0.9733
Tom 3.0e-4 3.0052e-4 8.1559e-3 3.2487e-2 5.4037e-2 7.3932e-2
5 3.000002e—4 1.7652e-3 2.1731e-2 4.4435e-2 6.5030e—2 8.4254e-2
TrELe 3.000001e—4 1.7577e-3 2.1732e-2 4.4433e-2 6.5029e—2 8.4254e—2

value, by solving the subregion nonlinear system, the subtle increment of the photon temperature on this mesh has been
reflected (the computed photon temperature is 3.000003e—4 and the predicted photon temperature is 3.000002e—4). The
proportion factors of the variation ratio of electron energy are similar.

The total iteration numbers, function evaluation numbers and CPU time for different g and M are listed in Table 9. In this
table and afterward ones, the following symbols are used:

NNI represents the nonlinear iteration number for solving the nonlinear equations;
NLI represents the linear iteration number for solving the linear equations;

NFE represents the function evaluation number; and

CPU represents the CPU time (minute).

Besides, to show the computational efficiency of the improved initial value, the relative reduction of the total nonlinear iter-
ations, function evaluations and CPU time of the improved initial value to those of the usual initial value are listed in Table
10. For example, the improved efficiency of the nonlinear iterations is given by 100(NNTysq_totat — NN Limpr_totat) /NN T usua_totals
where NN 54 rorar 1S the total nonlinear iteration number of the usual initial value and NNIm, o the total nonlinear itera-
tion number of the improved initial value.

From Table 9, it can be seen that for all cases, the total nonlinear iteration numbers, linear iteration numbers, function
evaluation numbers and CPU time of the improved initial value are always less than those of the usual initial value. Table
10 shows that, for all cases, the total nonlinear iteration numbers, function evaluations and CPU time of the improved initial
value are less at least 50% than those of the usual initial value. Furthermore, the larger the scale of the problem is, the more

Table 9
Total iterations and CPU time for different initial values in one-dimensional case.
B (%) M Usual initial value Improved initial value
NNI NLI NFE CPU NNI NLI NFE CPU
1 160 3632 190,697 199,350 371.52 1805 81,922 86,921 177.49
320 4120 401,530 411,159 1792.55 1581 130,694 135,445 590.92
640 5938 1,054,129 1,068,656 12,325.19 1864 225,711 230,878 2592.04
2 160 3252 187,719 195,379 362.39 1522 79,039 83,239 168.35
320 3779 396,024 404,740 1730.16 1449 128,356 132,412 568.53
640 5691 1,070,097 1,083,917 12,712.33 1794 231,501 236,341 2649.14
5 160 3081 186,582 193,806 356.66 1419 79,096 82,996 165.30
320 3631 396,142 404,467 1735.68 1335 126,241 129,974 569.53
640 5470 1,044,835 1,058,072 12,186.26 1654 221,551 225,994 2473.13
10 160 3060 186,695 193,862 357.74 1375 77,652 81,449 164.34
320 3619 397,186 405,471 1729.55 1309 125,257 128,922 563.48

640 5444 1,045,010 1,058,240 11,623.80 1658 226,541 230,998 2538.86
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Table 10
Improved efficiency of the improved initial value in one-dimensional case (%).
B (%) M
160 320 640
NNI NFE CPU NNI NFE CPU NNTI NFE CPU
1 50.30 56.40 52.23 61.63 67.06 67.03 68.61 78.40 78.97
2 53.20 57.40 53.54 61.66 67.28 67.14 68.48 78.20 79.16
5 53.94 57.18 53.65 63.23 67.87 67.19 69.76 78.64 79.71
10 55.07 57.99 54.06 63.83 68.20 67.42 69.54 78.17 78.16

computational cost can be saved. This shows that the improved initial value can improve the computational efficiency
greatly. In particular, the improved initial value has the potential and advantage for solving large scale problem.

5.4. Two-dimensional case

In this subsection, we consider the two-dimensional case. For this case, the photon temperature on the free surface is set
as

Trn(.1) = 1(2+ V) sin((2mx)/A) +2VE+1, <4,

foA% 1 sin((27x)/A) + 2, t>4.

For the domain partition, altogether three cases are considered: L =M =64, L =M = 128 and L = M = 256. Besides, the
parameters for the improved initial value are set as ky = M/32+ 1, kr =M/32+1 and k, = M/16 + 1.

In Table 11, the CPU time (minute) for solving the full nonlinear equations and computing the improved initial value is
listed. The symbols in this table have same meanings as in Table 5. It can be seen from this table that the total cost of CPU
time for computing the improved initial value is less than 0.07 of the total time for solving the full nonlinear equations. Fur-
thermore, with the increase of the problem scale, the relative cost for computing the improved initial value has a tendency of
decrease. For the cost spent on computing the improved initial value, more than half time is used to solve the subregion non-
linear equations, and less than half time is spent at the first phase to predict the energy value.

As in the case of one dimension, the reliability of the computational result can be verified by testing the energy conser-
vation. Here the energy conservation error curves for the usual initial value are plotted in Fig. 10, where g = 2%. The left and
right figures are respectively the error curves corresponding to M = 64 and M = 128. It is easy to see from Fig. 10 that the
energy conservation error for M = 64 is less than 1.5 x 1073, and for M = 128 less than 2.5 x 107>. This means that the en-
ergy is conservative in the process of simulation when the usual initial value is used. For the improved initial value, it can be
shown in the similar way that the energy is also conservative.

Table 11
CPU time for computing the improved initial value (two dimension, = 1%).
M CPUtotal CPUimpr CPUphase,one CPUphase,twn CPUimpr/CPUmtal
64 98.6923 6.6922 3.3064 3.3858 0.0678
128 528.3387 25.1565 9.9032 15.2535 0.0476
256 5905.7103 155.5728 72.4207 83.1521 0.0263
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